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ABSTRACT

We present a robust method for the image denoising task

based on kernel ridge regression and sparse modeling. Added

noise is assumed to consist of two parts. One part is impulse

noise assumed to be sparse (outliers), while the other part

is bounded noise. The noisy image is divided into small

regions of interest, whose pixels are regarded as points of

a two-dimensional surface. A kernel based ridge regression

method, whose parameters are selected adaptively, is em-

ployed to fit the data, whereas the outliers are detected via the

use of the increasingly popular orthogonal matching pursuit

(OMP) algorithm. To this end, a new variant of the OMP

rationale is employed that has the additional advantage to

automatically terminate, when all outliers have been selected.

Index Terms— image denoising, OMP, OMP termination

criteria, kernels, Reproducing Kernel Hilbert Space, outliers,

Kernel Ridge Regression

1. INTRODUCTION

The problem of image denoising is one of the most fundamen-

tal ones in the area of image processing. Many techniques

have been proposed to deal with it, ranging from the popular

wavelet-based image denoising framework (e.g., [1, 2, 3]), the

maximum likelihood estimation methods (e.g., [4]) and the

methods based on Partial Differential Equations (e.g., [5]), to

specific methods for impulse detection (e.g., [6]) and methods

of non linear modeling using regression and/or local expan-

sion approximation techniques [7].

Another path, that has been considered in the respective

literature, is the adoption of the rich and powerful machine

learning toolbox. Following this rationale, in [8] and [9], a

support vector regression (SVR) approach is considered to

fit the image pixels, while in [10] the kernel principal com-

ponents of an image are extracted and the respective expan-

sion is truncated to produce the denoising effect. On the other
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hand, in [11, 12], a kernel-based regularized regression task

is considered, exploiting the semi-parametric representer the-

orem as a means to model and preserve the sharp edges of the

image, following a function expansion rationale as in K-SVD

algorithm [13].

In the present paper, we adopt an alternative strategy. We

assume that the noisy image is modeled as a sum of three

parts: a) a function, f , lying in a Reproducing Kernel Hilbert

Space (RKHS), which represents the noise-free picture, b) a

bounded noise vector, η, and c) a sparse vector, u, which

represents the impulses that are randomly distributed over the

image samples. An iterative procedure is employed, that cy-

cles over a regularized risk minimization task, which iden-

tifies the smooth part of the expansion (i.e., f ) and extracts

the bounded noise η, and an Orthogonal Matching Pursuit

(OMP) selection technique (e.g., [14, 15]) that approximates

the sparse vector u. Besides the sparse vector approximation

via the OMP, that targets the outliers, we also consider a non-

linear modeling in a RKHS, which captures the fine details

of the image (including the sharp edges), and a regularization

mechanism to guard against overfitting (i.e., considering the

outliers as some sort of sharp edges). The proposed scheme

is based on the recently introduced Kernel Regularized OMP

(KROMP) [16]. However, in this paper we also adopt an au-

tomatic termination criterion for the OMP mechanism. This

specific variant of the OMP is able to automatically decide

whether all outliers have been detected or not and hence ter-

minate the selection procedure without prior knowledge of

the bound of η. It is demonstrated that the proposed method

offers comparable performance to [11], albeit at significantly

reduced complexity. In the case of mixed noise comprised of

both Gaussian and impulse components, the present method

considerably outperforms other state of the art wavelet based

techniques. Moreover, in this paper, theoretical results re-

garding several important properties of KROMP are estab-

lished, for the first time. These include conditions for the

exact recovery of the support of the sparse vector, u, as well

as bounds for the final solution of KROMP.
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Fig. 1. Although each ROI contains N1 × N1 pixels (blue),

only N2×N2 of them (red) are used for the reconstruction of

the image.

2. PROBLEM MODELING

Suppose we are given a set of data of the form:

D = {(k, l, pk,l), k, l = 0, 1, . . . , N − 1},

such that pi,j = 0, 1, . . . , 255, representing a N×N region of

interest (ROI) of a specific noisy grayscale picture. Rearrang-

ing the data points, we may equivalently assume that D takes

the form R = {(xi, yi), i = 1, . . . , N2}, where each xi, yi
are equal to xi = (k/(N − 1), l/(N − 1)) and yi = pk,l,
respectively, for some k, l ∈ {0, 1, . . . , N − 1}. Moreover,

assume that

yi = f(xi) + ηi + ui, (1)

for i = 1, . . .N2, where f is a nonlinear function represent-

ing the noisy-free image, η is an unobservable bounded noise

sequence and u a sparse vector of outliers.

In this paper we consider the case, where the non-

linear function, f , lies in a Reproducing Kernel Hilbert

Space (RKHS) induced by the Gaussian kernel, κ(x,y) =
exp(−‖x − y‖2/σ2). RKHS, [17, 18], are inner product

function spaces with the following reproducing property:

f(x) = 〈f, κ(·,x)〉H. These spaces have been proved to be a

very powerful tool in statistical learning [18, 19, 20].

In contrast to our method, prior works, e.g., [11, 8, 9, 10],

have considered modeling the noisy-free image in a RKHS,

as

yi = f(xi) + ηi, (2)

without explicit modeling of the outliers and minimizing for

different kinds of empirical loss. In this context, these tech-

niques are only suitable for removing white Gaussian noise,

as impulse noise, or any other type of noise that follows a

heavy tailed distribution, usually causes the model to overfit,

if the model parameters are chosen so that the fine details of

the image are preserved. On the other hand, if the model pa-

rameters are chosen so that the smoothing effect is enhanced

to remove the complete set of outliers, the fine details are lost.
To resolve these issues, the present work considers a more

robust approach. The outliers are explicitly modeled as a
sparse vector, u, and the popular orthogonal matching pursuit
rationale is adopted to identify its support. Inspired by the cel-
ebrated representer theorem [21], we assume that f takes the

form: f(x) =
∑N2

j=1 ajκ(·,xj) + c, and solve the following

optimization task:

minimize
a,u∈RN2

,c∈R

‖u‖0

subject to

N2

∑

i=1



yi −

N2

∑

j=1

ajκ(xi,xj)− c− uj





2

+λ(c2 + ‖a‖2) ≤ ǫ,

(3)

where λ > 0 is the regularization parameter. Using matrix

notation, (3) can be shown to take the form:

minimize
a,u∈RN2

,c∈R

‖u‖0
subject to ‖y −Az‖2 + λzTBz ≤ ǫ,

(4)

where

A =
[

K 1 In
]

, z =





α

c
u



 , B =





IN2 0 ON2

0
T 1 0

T

ON2 0 ON2



 ,

while IN2 denotes the unitary matrix, 1 and 0 the vectors of

ones and zeros respectively and ON2 the all zero square ma-

trix. In other words, our goal is to find the sparsest vector of

outliers, u, such that the mean square error between the actual

noisy data and the estimated noise-free data plus the outliers

remains below a certain tolerance, ǫ, while, at the same time,

the solution remains “simple” (i.e., smooth). The latter is en-

sured by the regularization part of (4). The solution of (4),

which is computed by algorithm 1, defines the noisy-free im-

age, i.e., yest = Ka+c1. Note that although (4) employs the

ℓ0 pseudo-norm, it has been shown that it can be efficiently

solved using greedy techniques, like the popular OMP (an-

other solution for (4), employing a LASSO-like rationale can



be found in [22]). The following theorems (their proofs are

omitted due to lack of space) establish that algorithm 1 con-

verges and that, under certain reasonable assumptions, it is

able to recover the “correct” support of u with bounded re-

construction error.

Theorem 1 The norm of the residual vector r(k) = Aacz
(k)−

y in algorithm 1 is strictly decreasing. Moreover, the algo-

rithm will always converge.

Theorem 2 Assuming that y admits a representation of the

form y = Ka0+c01+u0+η, where ‖u‖0 = S and ‖η‖2 ≤
ǫ, then algorithm 1 recovers the exact sparsity pattern of u,

after N steps, if

ǫ ≤

∣

∣

∣

∣

min
k=1,2,...,N2

{uk, uk 6= 0}
∣

∣

∣

∣

2
− ‖f0 − f (0)‖2,

with f0 =
(

K 1
)

·
(

a0

c0

)

and f (0) =
(

K 1
)

·
(

a(0)

c(0)

)

.

Theorem 3 Assuming that y admits a representation as in

theorem 2, then the approximation error of algorithm 1, after

S steps, is bounded by

‖z(N) − z0‖ ≤ |λ|‖(a0 c0)‖+
√
N

(

1 + ‖(K 1)‖2
)

ǫ

λmin (ΩTΩ+ λI0)
,

where λmin

(

ΩTΩ+ λI0
)

is the minimum eigenvalue of the

matrix ΩTΩ + λI0, where

Ω =
(

K 1 I
)

, I0 =

(

0 0

0 I

)

.

The user-selected parameters ǫ, λ, control the quality of

the reconstruction regarding the outliers and the bounded

noise, respectively. Small values of ǫ model all noise samples

(even those originating from a Gaussian source) as impulses,

filling up the vector u, which will no longer be sparse. Sim-

ilarly, if λ is very small, f will closely fit the noisy data

including some possible outliers (overfitting). On the other

hand, if ǫ is very large, only a handful of outliers (possibly

none) will be detected. If λ is large, then f will be smooth

resulting to a blurry picture. In the following, we present a

method that automatically computes the best ǫ thus only the

choice λ is left to the user.

Finally, we have to point out that the accuracy of fit of

any kernel-based regression technique drops near the borders

of the data set. The proposed algorithmic scheme takes this

important fact into consideration, removing these points from

the reconstructed image.

Algorithm 1 : Automated Kernel Regularized OMP (au-

toKROMP)

Require: K, y, λ, ǫ
n = N2.

Initialization: k := 0
Sac = {1, 2, ..., n+ 1}, Sinac = {n+ 2, ..., 2n+ 1}
Aac = [K 1], Ainac = In = [e1 · · · en]
Solve: z(0) := argmin

z
||Aacz − y||22 + λ||α||22 + λc2

Initial Residual: r(0) = Aacz
(0) − y

Construct a histogram of the values of the residual |r(0)|,
using ceil(n/10) categories (intervals) of the same size.

Set T0 as the center of the first interval with the lowest fre-

quency.

while max{|r(k)i |, i = 1, . . . , n} > T0 do

k := k + 1
Find: jk := argmaxj∈Sinac

|r(k−1)
j |

Update Support:

Sac = Sac ∪ {jk}, Sinac = Sinac − {jk}
Aac = [Aac ejk ]
Update Current solution:

z(k) := argmin
z
||Aacz − y||22 + λ||α||22 + λc2

Update Residual: r(k) = Aacz
(k) − y

Update T0.

end while

3. THE ALGORITHM

The proposed denoising procedure splits the noise image P
into small square ROIs, R, with dimensions N1 ×N1. Then,

it applies the autoKROMP algorithm (see algorithm 1) se-

quentially to each R to find the noise free ROI R̃. How-

ever, only the centered N2×N2 pixels are used to reconstruct

the noise free image. As kernel based regression algorithms

suffer from reduced accuracy at the points lying close to the

borders of the respective regions, these are removed from the

final result. Hence, in order to avoid gaps in the final recon-

structed image, the ROIs contain overlapping sections (figure

1). The procedure requires two user defined parameters: (a)

the regularization parameter, λ, that appears in (4) and (b) the

Gaussian kernel parameter σ. The λ parameter regulates the

smoothness of f , i.e., small values of λ increase the deriva-

tives of f (e.g., more noise is included), while larger values

lead to flat, less accurate solutions. For this reason the values

of λ are chosen in an adaptive manner, so that smaller values

of λ are used in areas of the picture that contain edges. While

the user defines a single value for λ, say λ0, the denoising

scheme computes the mean gradient magnitude of each ROI

and classifies them into three categories. The ROIs of the first

class, i.e., those with the largest values of gradient magnitude,

solve (4) using λ = λ0, while for the other two classes the al-

gorithm employs λ = 5 ∗ λ0 and λ = 15 ∗ λ0 respectively.

Such choices came out after extensive experimentation, and

the algorithm is not sensitive to them.
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Fig. 2. Computation of T0 for the stoping rule.

The autoKROMP algorithm cycles through an outlier se-

lection criterion, that locates the position, say jk, of the outlier

most further away from the current estimation; then a regular-

ized least squares minimization task estimates the vector z to

be used at the next step i.e., z(n) = argmin ‖y −Aacz‖2 +
λzTBacz. The matrix Aac is initialized at [K 1] and aug-

mented at each cycle by the vector ejk . Although the algo-

rithm presented above solves one minimization task per it-

eration step, this can be bypassed, by applying a matrix de-

composition on Aac and employ Cholesky factorization ar-

guments, that significantly simplify complexity. This is a

common technique in OMP related methods and it is made

possible as large blocks of the matrices Aac and Bac remain

unchanged [16].

The presented algorithm exploits a very simple, yet effec-

tive automatic stopping rule. The main idea of this scheme

is presented in figure 2. At each step, i, the algorithm con-

structs a histogram of the values of the residual, i.e., |r(i−1)|,
and then computes the first interval with the lowest frequency.

The center of that interval is denoted as Ti and the algorithm

assumes that all residual’s coordinates larger than T
(i)
0 =

min{Tk, k = 1, . . . , i} correspond to outliers. The cycle

stops, when the absolute values of all coordinates of the resid-

ual vector drop below T
(i)
0 .

4. EXPERIMENTS

In this section, we demonstrate the effectiveness of the pro-

posed algorithm in the denoising problem (figure 3). We

compare autoKROMP with another kernel-based denoising

method ([11]) and the popular BM3D wavelet denoising

method [3]. The experiments have been carried out using the

Lena and Boat images from the Waterloo Image Repository,

which have been corrupted by synthetic noise comprising

of a Gaussian part and randomly placed outliers. Table 1

Noise autoKROMP Kernel [11] BM3D [3]

20 dB Gaussian + 5% outliers 32.05dB 32.34dB 29.70dB

20 dB Gaussian + 10% outliers 31.36dB 31.69dB 28.30dB

20 dB Gaussian + 15% outliers 30.48dB 30.55dB 26.30dB

(a)

Noise autoKROMP Kernel [11] BM3D [3]

20 dB Gaussian + 5% outliers 29.61dB 29.85dB 27.82dB

20 dB Gaussian + 10% outliers 28.91dB 28.95dB 26.59dB

20 dB Gaussian + 15% outliers 28.28dB 28.37dB 25.00dB

(b)

Table 1. PSNRs of the reconstructed images using various

denoising techniques for: (a) the Lena image and (b) the Boat

image.

shows that autoKROMP has comparable performance with

the kernel-based method of [11], while at the same time it

requires significantly less computational resources. In our

experiments autoKROMP required only a few seconds to

complete the task, which is comparable with that required

by BM3D. Note that this is less than 1/20th of the time that

the method of [11] needs for the same reason (recall that

[11] employs a dictionary to model the edges of the im-

age and solves the respective minimization problem using

Polyak’s Projected Subgradient Method). Compared to the

BM3D method, autoKROMP is able to efficiently remove the

majority of outliers, achieving higher PSNRs in most cases

(e.g., the Lena and Boat images in table 1). Note that in

all the presented experiments the parameters of the specific

algorithms have been carefully tuned to get the best pos-

sible PSNRs. Specifically, the autoKROMP algorithm has

been implemented using the following parameters: (a) for the

three cases of the Lena image (see table 1a): σ = 0.3, 0.3 and

0.35, λ = 1, for each case respectively, and (b) for the boat

image (table 1b): σ = 0.25, 0.25 and 0.3, λ = 1. In all cases

the dimension for the ROIs were set equal to N1 = 12 and

N2 = 8. The respective code (implemented in MatLab) can

be found at bouboulis.mysch.gr/kernels.html.

5. CONCLUSIONS

We presented a robust denoising approach based on Kernel

Ridge Regression and sparse modeling via the OMP ratio-

nale. Our method cycles using an outlier identification step

and a least squares minimization task that is solved itera-

tively using Cholesky decomposition. The algorithm termi-

nates automatically using an effective termination criterion

for the OMP mechanism, which can be used in any other

OMP realization. The performance of the proposed denoising

method was demonstrated in the case of mixed noise (consist-

ing of both Gaussian and impulse components). Experiments

showed that the present method can significantly outperform

state of the art wavelet based methods with comparable com-

plexity.
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Fig. 3. The Lena image: (a) corrupted by Gaussian noise plus

5% impulses and reconstructed using (b) the BM3D method

of [3] (PSNR = 29.7 dB), (c) autoKROMP (PSNR = 32.05

dB) and (d) the kernel based method of [11] (PSNR = 32.34

dB).

(a)

(b)

Fig. 4. The Boat image: (a) corrupted by Gaussian noise plus

5% impulses and (b) reconstructed using autoKROMP (PSNR

= 29.61 dB).

(a)

(b)

Fig. 5. The Boat image: (a) corrupted by Gaussian noise

plus 10% impulses and (b) reconstructed using autoKROMP

(PSNR = 28.91 dB).
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